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Synthesis of N-hydroxyenamide, a potential precursor of chartelline
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Abstract

In our synthetic plan for chartelline A–C, a compound including N-hydroxyenamide moiety was designed as an important inter-
mediate. Synthesis of the required N-hydroxyenamide by N-acylation of a suitable oxime derivative has been developed using model
compounds.
� 2007 Elsevier Ltd. All rights reserved.
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Chartelline A and its analogues are unique members of a
marine alkaloid family isolated in the 1980s from a marine
bryozoan, Chartella papyracea, by Christophersen and
co-workers (Fig. 1).1 Chartelline A, which includes indole-
nine, b-lactam, and imidazole (three biologically important
heterocycles), linked together by an unsaturated 10-mem-
bered ring, has to date not been reported to have any
significant biological activity. Nevertheless, the novel struc-
ture of the compound has made it a challenging synthetic
target for organic chemists. Our attempts to synthesize this
class of natural products has thus far resulted in the devel-
opment of an efficient methodology for the preparation of
spiro-b-lactam attached to an indolenine moiety, a core
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Fig. 1. Structure of chartelline alkaloids.
structure of chartelline A–C alkaloids.2,3 The first total syn-
thesis of chartelline C by Baran et al.4 and extensive reports
toward the synthesis of chartelline alkaloids from the
Weinreb5 and Magnus6 group has prompted us to disclose
our recent synthetic efforts directed toward the synthesis of
these compounds.

Scheme 1 outlines our strategies for the synthesis
of chartelline A–C based on our previously reported
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Scheme 1. Strategies for the synthesis of chartelline A–C.

mailto:nisikawa@agr.nagoya-u.ac.jp


Table 2
Synthesis of N-allyloxyenamide containing imidazole
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Entry Oxime Acid chloride Product Yield (%)

R1 R2 R3

1 8a Bn H 4a Me 9a 0
2 8b Bn Br Me 9b 13a

3 8c H Br Me 9c 47
4 8c H Br 4c PhCH2 9d 48

5 8c H Br

4b
N
Boc

CH2

9e 39b,c

a Starting material was recovered in 74%.
b Starting material was recovered in 27%.
c After treatment with TsOH in aq. CH3CN.
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spiro-b-lactam chemistry. This methodology implements
nucleophilic substitution at the amide nitrogen by the
carbon atom at the 3 position of indole.3 Employing this
methodology for the formation of b-lactam in a trans-
annular manner requires a 12-membered macrolactam
containing a N-hydroxyenamide moiety, viz. compound I.
However, there are few reports regarding the synthesis of
N-hydroxyenamide.7,8 Our retrosynthetic consideration
led us to two disconnections that potentially could give
the desired N-hydroxyenamide (compound I); (a) a direct
intramolecular coupling between hydoroxamic acid and
vinyliodide (compound II), or (b) N-acylation of alkyl-
oxime (compound III). Since our preliminary experiments
regarding route (a) were unsuccessful,2,9 our attention
was turned to route (b).

Our studies commenced with a model experiment for N-
acetylation of O-benzyl oxime 5a prepared from phenyl-
acetaldehyde (Table 1). The reaction proceeded smoothly
in refluxing dichloromethane to afford benzyloxyenamide
6a in 85% yield (Table 1, entry 1).10 However, deprotection
of the benzyl group by hydrogenolysis (H2, Pd/C, AcOEt)
failed due to preferential reduction of the C–C double
bond. To find a suitable protective group for hydroxy-
enamide, several oximes 5b–e11 were exposed to the same
N-acetylation condition affording the corresponding
N-alkoxyenamides 6b–e (entries 2–5).12 The low yields for
the Dmb (3,4-dimethoxybenzyl)- and SEM-protected
hydroxyenamide 6c and 6d may be caused by the labile
nature of the protective group under acidic conditions.
After conducting the deprotection experiments, we found
that the allyl group in compound 6e was smoothly depro-
tected with palladium(0) catalyst in the presence of mor-
pholine affording the desired product in 68% yield (entry
5). The forgoing results encouraged us to synthesize
Table 1
N-Acylation of oxime derivatives

N
Ph

OR2 CH2Cl2
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O
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N-acylation of
oxime derivatives

4a,b 5a-e

Entry N-Acylation of oxime derivatives

R1 R2 Product

1 4a Me 5a Bn 6a

2 Me 5b PMB 6b

3 Me 5c Dmb 6c

4 Me 5d SEM 6d

5 Me 5e Allyl 6e

6

4b
N
Boc

CH2

5e Allyl 6f

a The yield was obtained in the presence of MS 3A.
N-allyloxyenamide indole 6f (entry 6). In this specific case,
the addition of molecular sieves (MS 3A) improved the
yield.13 Deprotection of the allyl group was carried out
under the conditions mentioned above in good yield.

Based on the above results, we attempted to synthesize
N-allyloxyenamide appended to an imidazole unit found
in the chartelline alkaloids (Table 2).14 Surprisingly, the
oxime containing N-benzylimidazole 8a did not react when
treated with acetyl chloride at reflux in dichloromethane
(entry 1), while the same conditions applied to compound
N
OR2

Ph
deprotection

6a-f 7a,b

R1

O

N
OH

Ph

Deprotection

Yield (%) Conditions Result

85 H2, Pd–C/EtOAc See the text

56 DDQ/CH2Cl2–H2O Decomposed
CAN/aq CH3CN Decomposed

35 DDQ/CH2Cl2–H2O Decomposed
30 TBAF/THF 7a 13%
78 Pd2[dba]3, Ph3P, morpholine/THF 7a 68%

45 (58)a Pd2[dba]3, Ph3P, morpholine/THF 7b 75%
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8b gave a poor yield of the corresponding product 9b along
with a considerable amount of the starting material 8b

(entry 2). Interestingly, these results indicate that substitu-
tion of the imidazole ring might affect the reactivity of the
oxime toward N-acylation. The N-benzylimidazole 8a

might rapidly react with acetyl chloride to form an acyl
imidazolium cation, which prevents further N-acylation
of the oxime through the high-energy dicationic intermedi-
ate.15 On the other hand, the bromo substitution in com-
pound 8b decreases the nucleophilicity of the imidazole,
which probably hinders the corresponding acyl imidazo-
lium cation to be formed. We anticipated that debenzylated
imidazole 8c would react with acyl chlorides to form acyl
imidazole, not acyl imidazolium cation, which might allow
N-acylation of the oxime. As expected, N-acylation of
compound 8c with acetyl chloride and phenylacetyl chlo-
ride gave the corresponding allyloxyenamides 9c16 and
9d, respectively, in moderate yields (entries 3 and 4). When
the reaction was carried out using phenylacetyl chloride, an
unstable less polar product was observed by TLC analy-
sis.17 Upon purification by silica gel chromatography this
compound was converted to the desired product 9d. When
the same oxime 8c was reacted with indoleacetyl chloride
4b, the corresponding allyloxyenamide 9e18 could be
obtained after treatment with TsOH in aqueous CH3CN.19

Compound 9e has a structure similar to the one found in
compound I depicted in Scheme 1 (Table 2, entry 5).
Although these model experiments gave E-enamides exclu-
sively, intramolecular cyclization would afford Z-enamide
due to the strained structure of cyclic E-enamide.

In summary, a new synthetic method for the formation
of N-hydroxyenamide by N-acylation of oxime has been
developed. The current method should be applicable to
the synthesis of the 12-membered macrolactam I, a possible
precursor of chartelline A–C. Further synthetic studies
toward chartelline along the synthetic pathway outlined
in Scheme 1 are currently underway in our laboratories.
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14. Oximes 8a–c were prepared from the corresponding aldehydes. The
synthesis of these aldehydes will be reported elsewhere.

15. Dicationic intermediate referred to in the text.
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16. Compound 9c: IR (KBr) mmax 3172, 2982, 1727, 1652, 1550, 1437,
1388, 1258, 1143 cm�1. 1H NMR (CDCl3, 400 MHz): d 1.19 (3H, t,
J = 7 Hz, –OCH2–CH3), 1.58 (6H, s, dimethyl), 2.44 (3H, s, –Ac),
4.13 (2H, q, J = 7 Hz, –O–CH2–CH3), 4.47 (2H, d, J = 7 Hz, –CH2–
CH@CH2), 5.47 (1H, d, J = 10 Hz, –CH@CHAHB), 5.53 (1H, d,
J = 17 Hz, –CH@CHAHB), 6.09 (1H, m, –CH@CH2), 6.20 (1H, d,
J = 14.5 Hz, –CH@CH–), 7.77 (1H, d, J = 14.5 Hz, –CH@CH–).
13C NMR (CDCl3, 100 MHz): d 14.2, 20.8, 26.3, 43.5, 60.9, 75.8,
100.0, 114.9, 118.7, 122.4, 125.3, 129.8, 143.9, 169.9, 176.6.
HRMS (FAB) (M+H)+ calcd for C16H23BrN3O4 402.0851, found
402.0889.

17. The structure of the less polar product is assumed to be the
corresponding enamide, which has an N-phenylacetyl group attached
to the imidazole ring.

18. Compound 9e: IR (KBr) mmax 3203, 2978, 1729, 1652, 1460, 1358,
1257, 1137 cm�1. 1H NMR (CD3OD, 400 MHz): d 1.20 (3H, t,
J = 7 Hz, –OCH2–CH3), 1.56 (6H, br s, dimethyl), 1.72 (9H, s, Boc),
2.58 (3H, s, –CH3), 4.01 (2H, br s, –CH2–), 4.15 (2H, q, J = 7 Hz,
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br s, –CH@CH2), 7.20 (1H, t, J = 7 Hz, indole), 7.24 (1H, t, J = 7 Hz,
indole), 7.47 (1H, d, J = 7 Hz, indole), 7.51 (1H, br d, J = 14.5 Hz, –
CH@CH–), 8.12 (1H, d, J = 8 Hz, indole). HRMS (FAB) (M+H)+

calcd for C30H38BrN4O6 631.1954, found 631.1928.
19. Before the acid treatment, the product was an allyloxyenamide

containing N-indoleacetyl imidazole, which could be isolated by silica
gel TLC.


	Synthesis of N-hydroxyenamide, a potential precursor of chartelline
	Acknowledgements
	References and notes


